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Secure communication

Content protection  

User authentication

and much much more…

Cryptography is everywhere
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Crypto Recipe

Define task

Model adversary

Define security of a solution

Build crypto primitive

Security proofs

Primitive is secure 

if assumptions hold

Computational hardness
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➢ Public-key crypto inherently requires hard computational problems.                                  

For one: must be hard to compute the secret key from the public key.

➢ Issue: we don’t know whether hard problems exist!  

➢ ‘Solution’: conjecture that they do exist—in general, or specifically.                                  

Then devote scrutiny and algorithmic effort to gain confidence.

“Cryptographers seldom sleep well.” –Silvio Micali 

Case study:

RSA/DH are based on the hardness of Factoring/Discrete-Log variants. 

Hard problems and Public Key Cryptography (PKC)
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➢ We need crypto problems to be infeasible for any attacker to solve. 

➢ Traditionally, ‘attacker’ = classical algorithm. 

➢ But for quantum algorithms, ‘feasible’ appears broader…

How Hard, and Hard How?
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➢ Concept suggested by quantum physicists Paul Benioff and Richard Feynman 

(early 1980s)

➢ Exploit quantum mechanics to process information 
Use quantum bits = “qubits” instead of 0’s and 1’s 

Qubits can be in “superposition states”: ability of quantum system to be in multiples states at the same time 

Massive parallelisation potential to vastly increase computational power beyond classical computing limit

➢ Computational problems that are infeasible for classical computers may become 

easy for quantum computers

➢ Can have huge impact on cryptography!

Quantum Computing
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➢ 1994: Shor’s Algorithms – exponential speedup of QCs for breaking classical 

Public Key Crypto

■ Implication: Large Scale QC → RSA and Diffie-Hellman public-key systems become 
insecure!

➢ 1996: Grover’s Algorithm – polynomial speedup of QCs for breaking 

Symmetric-Key Crypto

■ Currently is the best known quantum attack against AES.

■ The security of AES against quantum computers is at least ½ of the classical bit level 
security. 

Quantum Computing Threat to Cryptography
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➢ We need crypto problems to be infeasible for any attacker to solve. 

➢ Traditionally, ‘attacker’ = classical algorithm. 

➢ But for quantum algorithms, ‘feasible’ appears broader:

➢ With a large-scale QC, Shor’s algorithm totally breaks DH, RSA, and all other 

widely used public-key crypto! 

How Hard, and Hard How?
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Post-Quantum Cryptography (PQC)

No! Only that all the PKC we’ve been widely using is quantumly broken.Answer

Did Shor show that secure PKC is impossible against quantum 

computers? 

Question
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Post-Quantum Cryptography (PQC)

No! Only that all the PKC we’ve been widely using is quantumly broken.Answer

Did Shor show that secure PKC is impossible against quantum 

computers? 

Question

Post-Quantum Cryptography (a.k.a, ‘Quantum Resistant’, ‘Quantum Safe’, …)

Design cryptosystems that can run on (today’s) classical computers,

while being secure against quantum attacks.
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➢ Big QCs probably won’t exist for many years, if ever—can’t we wait until they’re 

more imminent? No!

■ Harvesting attacks: store today’s keys/ciphertexts to break later.

■ Rewrite history: forge signatures for old keys.

 “Who controls history controls the future.”

 –George Orwell, 1984

■ Deploying new cryptography at scale takes a long time: 10+ years

“Our ultimate goal is to provide cost effective security 

against a potential quantum computer.” –NSA, 2015

What’s the Rush?
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Technological Improvements in QC:
1980-82: idea proposed by Benioff / Feynman
1998: first 2-qubit quantum computer realized
2000: 7-qubit quantum computer
2006: 12-qubits
2019: 53 qubits (IBM), Google’s successful quantum supremacy experiment published
2021: IBM ‘Eagle’ - 127 qubits
2022: IBM ‘Osprey’ - 433 qubits
2023 (IBM Roadmap): 1121 qubits?

IBM is aiming for 100K qubits, 2026+, https://www.ibm.com/quantum/roadmap

Quantum Computing Threat to Cryptography – How Far Away?

Concrete estimates for Elliptic Curve Discrete-Log implementation of Shor’s algorithm: ~2124 qubits, ~2.3 x 109 quantum gates
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➢ Web TLS protocol

➢ IPSec VPN

➢ Database Systems

➢ Access Control/Authentication Systems

➢ Internal Systems Using Encryption

➢ Multi-Factor Authentication (MFA) Apps

➢ Operating Systems

Common Applications Utilising PKC
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➢ The Threat ✓

➢ The When ✓

➢ The Response → Key steps to take:

■ PQC Diagnosis; making an asset inventory

Risk assessment

Inventory of all cryptographic assets used in the organisation

Inventory of all the data handled by the organisation

■ Planning the Migration

Urgency

Business process planning; cost

Technical planning; Cryptography Replacement, Hardware Replacement

■ Executing the Migration

PQC Migration
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Post-Quantum Cryptography in the Indo-Pacific Program (PQCIP)
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The Quantum Technologies Future Science Platform - help build world class quantum capability.

Collaboration with universities and industry, develop next generation solutions using quantum technologies.

Australia can continue playing a key role in the emerging global quantum industry.

The future is quantum and we are working to ensure Australia is ready for it.
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● PQC, NIST PQC Process

● PQC Migration

● PQC and IoT
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Resisting Quantum Attacks on Public-Key Crypto

● Two main countermeasure approaches investigated:

○ Quantum-Safe Cryptography 
■ Aka Post-Quantum Cryptography (PQC)
■ Public key cryptosystems based on computational problems 

resistant even to quantum computer attacks
■ legitimate parties use only classical computers 

● “plug-in” replacement to quantum-insecure public key crypto.
■ Active research topic in cryptography for > 20 years
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Resisting Quantum Attacks on Public-Key Crypto

● Two main countermeasure approaches investigated (cont):

○ Quantum Cryptography 
■ Aka Quantum Key Distribution (QKD)
■ Key exchange protocol resistant even to quantum 

computer attacks
■ legitimate parties use quantum communication/ computation 

computers (not plug-in replacement for quantum-insecure 
public-key crypto, need special quantum hardware).

■ Requires quantum-safe classical authentication 
■ Will not discuss further in this talk
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NIST PQC

NIST (US) PQC standardization process: solicit, evaluate and standardise quantum-resistant public-key 
cryptosystems:

○ Nov. 2017: PQC algorithm submissions deadline 
■ 69 algorithms submitted (public key encryption and signatures)
■ Initiate 5 year analysis/evaluation phase 

○ Jan. 2019: Second round algorithms selected (26)
○ Jul. 2020: Third round algorithms selected (7)
○ Jul. 2022: New PQC standard algorithms selected (4)
○ ~ 2022-23: New PQC standards developed
○ Goal: ready for PQC deployment in by ~ 2024-27
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NIST PQC Process: Current Status

Selected PQC standards:

○ PKE/KEMs:
● Kyber (Structured lattices)

○ Signatures: 
● Dilithium (Structured Lattices)
● Falcon (Structured lattices)
● SPHINCS+ (symmetric key / hash functions)
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NIST PQC Process: Current Status

● Round 4 PKE/KEMs:
○ BIKE (Code)
○ Classic McEliece (Code) 
○ HQC (Code)

● Call for Additional Digital Signature Schemes:
○ NIST call for submission of additional efficient PQ signature proposals not based on 

structured lattices. Due 1 June 2023.
■  “backup” fast/short signature standard in case unexpected vulnerabilities 

discovered in lattice-based schemes
■ Possibly short/fast signatures for low-resource apps

○ Submission from CSIRO: eMLE-Sig 2.0
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Quantum-Safe Crypto: Approaches – Lattices & Codes

● Linear Equations with errors – Codes & Lattices

○ Idea inspired by Error Correction Codes
○ Add ‘small’ errors to a linear equation to make it hard to solve:  y = A*x + 

e
○ Encode a message x  by an expanding linear transformation (add 

redundancy)
○ Can decode if noise e is sufficiently `small’

■ Easy to decode for special codes (wireless communication)
■ Computationally hard to decode for “random-looking” linear codes in 

high dimension
● Codes & Lattices: different ways to measure `small’
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Lattice-based Cryptography: Idea (1)

sdsd

• Lattice = periodic grid of points in space
• Generated by some set of basis vectors

• E.g. (right) lattice in 2-D (green points = lattice, basis in 
blue)

• Can be easily defined mathematically in any dimension n
• hard to visualise/draw for  n > 3!

• Fact: geometric problems in lattices seem to be 
computationally infeasible (run time exponential in n) for 
large dimension n

• Even against quantum computers!
• Lattice-based crypto: design pub-key encryption so 

breaking it requires solving a  hard geometric lattice 
problem!
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Lattice-Based Cryptography: Idea (2)

• Hard geometric lattice Problem: Bounded-Distance 
Decoding (BDD)

• Given a basis B of a (high-dim.) lattice and a point c 
close to a lattice point m, compute m

• Idea of Public-key encryption: 
• Pub  key pk: basis B for lattice
• Private key sk: decoding trapdoor for lattice
• Encrypt(m): to encrypt a message m (lattice point):

• choose random short error vector e
• Compute c = m + e  
• Ciphertext = c

• Decrypt(c, sk): use sk to compute closest lattice 
point m to c.

• Security: hard to solve BDD without sk!

m

c

e
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● Lattices: Performance and Security 

○ Security: 
■ best known attack time ~ 2O(k) for key length k
■ But exponent constant is quite small → moderately large 

key/ciphertext/signature lengths
■ Studied in math  & comp sci. since 1980s

○ Performance: With practical structured lattices (MLWE/RLWE/NTRU 
problems): 

■ fast algorithms (~ ECC or faster) and 
■ moderately short keys/ctxts (~10x-40x  ECC length)

Quantum-Safe Crypto: Approaches – Lattices & Codes
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● Codes: Performance and Security 
○ Security: 

■ best known attack time ~ 2O(k) for key length k
■ But exponent constant is quite small → moderately large 

key/ciphertext/signature lengths
■ Studied in math  & comp sci. since 1950s 
■ McEliece PKC (1977) – based on Goppa codes

○ Performance: With original McEliece (one of the NIST Round 4 KEMs)
■ Moderately fast algorithms
■ very short ctxts (~128 bytes)
■ Very long keys (> 100kB)
■ Structured codes can improve performance

○ Difficult to implement signatures!

Quantum-Safe Crypto: Approaches – Lattices & Codes
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● Idea:  
○ Use well established symmetric-key algorithms

■ Public key = Merkle tree hash of many one-time signature keys (short)
■ Signature = one-time signature (reveal sk) + Merkle auth path (siblings of all 

nodes on the path from leaf to root) 
– long signature!

● Security: well understood
● Performance: 

■ short public key
■ Long signature and slow algorithms

Quantum-Safe Crypto: Approaches – Symmetric-key approaches (digital signatures only)
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Challenges in PQC migration

● Performance characteristics are very different compared to classical PKC.
○ Slower speed

■ Can be improved with better SW/HW implementations in 
the future 

○ Larger sizes (public key, ciphertext/signature)
■ No easy way to improve without redesigning the scheme

29



Challenges in PQC migration

● Challenge: Many existing applications/protocols were designed based on the 
performance characteristics of classical PKC. 
○ E.g. Key/ciphertext may not fit into one packet in network communication.

■ Fragmentation issues for UDP-based protocols e.g. IKE
○ Require dedicated solutions for PQC migration!

● Challenge: Lack of confidence in PQC.
○ Classical PKC has been analyzed and used in practice for decades. 

■ Backward compatibility issues
○ Potential new attacks against PQC.
○ Require hybrid solutions.
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PQC speed comparison (128-bit security, scaled to ms on 1GHz Intel CPU with AVX2 and AES-NI)

Scheme KeyGen Encap/Sign Decap/Verify

Kyber512 (AES 
PRG)

0.02188 0.028592 0.02098

Dilithium2 (AES 
PRG)

0.070548 0.194892 0.072633

Falcon512 19.872 0.386678 0.08234

SPHINCS+-Haraka-
128f-simple

0.482332 12.196792 0.799808

SPHINCS+-Haraka-
128s-simple

30.075604 240.763926 0.308774
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PQC size comparison (128-bit security, in bytes)

Scheme Public Key Ciphertext/Signatu
re

Kyber512 800 768

Dilithium2 1312 2420

Falcon512 897 666

SPHINCS+-128f 32 17088

SPHINCS+-128s 32 7856

ECDHE 
(secp256r1)

32 32

RSA-2048 
Signature

256 256

Note: The Maximum 
Transmission Unit (MTU) of 
the Ethernet is ~1500 
bytes.
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5W1H in PQC migration

● Who, What, When, Where, Why, How
○ Who: Almost every organisation
○ When: Need to start now
○ Why: Quantum attacks; Fast emerging quantum technology

● This Section will focus on What, Where, and How:
○ What (libraries etc.) can be used for PQC migration?
○ Where changes need to be made in certain protocols/applications?
○ How to make changes? (i.e. the migration strategy)
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● TLS, IPSec, SSH, …
● Goals:

○ Want to have (virtual) secure channel between two points
○ Secure in terms of

■ Confidentiality
■ Integrity
■ Authentication

● Use Public Key Cryptography (PKC) to authenticate the peers and establish 
a shared (symmetric) secret key; then use symmetric key cryptography for 
bulk data
○ Key agreement protocol for establishing the shared secret
○ Digital signature for authentication (certificate)

Common Internet communication protocols
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Architectural design of common libraries

● Cryptography module + Protocol module
● Cryptography module:

○ Implement ciphers (PKC and symmetric), e.g. RSA, AES, SHA-256, …
● Protocol module:

○ Implement the actual protocol e.g. TLS, IKE, …
○ Depend on the cryptography module for ciphers

● Examples:
○ TLS library OpenSSL: libcrypto (cryptography module) + libssl (protocol 

module)
○ IPSec application StrongSwan: libstrongswan (cryptography module) + 

libcharon (protocol module)
35



PQC migration: Pure PQC

● Replace classical key agreement protocol and/or digital signatures with PQC 
analogue
○ E.g. ECDHE → Kyber; RSA signature → Dilithium

● Changes in cryptography:
○ Implement PQC algorithms

● Changes in protocol:
○ Support PQC ciphers (e.g. add to the cipher suite/DH group number)
○ Need to support Key Encapsulation Mechanism (KEM) in key agreement 

(see TLS migration for an example)
○ May need dedicated solutions for PQC performance characteristics (e.g. 

IKE_INTERMEDIATE [RFC9242] in IKEv2)
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Limitations of Pure PQC

● Backward incompatible with classical PKC
● Lack of confidence in PQC

○ Theories have been studied for years, instantiations are not.
■ Potential new attacks against certain PQC 

constructions/schemes/implementations.
○ Risk management.

■ “Diversification is the only free lunch” – Harry Markowitz, Nobel Prize 
laureate.

● Need hybrid between classical PKC and PQC
○ Security depends on the strongest of the two.
○ We focus on key agreement, as hybrid signature/certificate isn’t well understood.
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PQC migration: Hybrid between classical PKC and PQC

● Non-composite hybrid:
○ Modify the design and state machine of the protocol.

■ Perform both classical and PQC key agreements, then combine the 
generated secret values.

○ Keep the changes in cryptography minimal.
■ Leave the ciphers (ECDHE, Kyber, etc.) “as it is”. 

○ Example: Multiple Key Exchanges in IKEv2 [RFC9370]
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PQC migration: Hybrid between classical PKC and PQC

● Composite hybrid:
○ Define “hybrid” ciphers in cryptography.

■ Perform both classical and PQC algorithms. The generated secret 
value contains entropy from both. 

■ E.g. x25519_kyber512
○ Keep the protocol “as it is”.
○ Example: Hybrid key exchange in TLS 1.3 (IETF draft)
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PQC migration: Hybrid between PQC and QKD

Basquana: https://www.qkdnetworkcanadauk.com/ 40
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Cryptographic libraries implementing PQC

● Open Quantum Safe (liboqs):
○ https://openquantumsafe.org/
○ C library
○ Developed by University of Waterloo, Canada
○ Include reference implementations of NIST PQC selected algorithms for 

standardization, Round 4 KEMs, FrodoKEM, NTRUPrime
○ Provide common APIs for these algorithms
○ Preliminary integrations in TLS and SSH

■ https://openquantumsafe.org/applications/tls.html
■ https://openquantumsafe.org/applications/ssh.html 
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Cryptographic libraries implementing PQC

● Bouncy Castle
○ https://www.bouncycastle.org/
○ Java/C# library
○ Developed by Australian charity Legion of the Bouncy Castle Inc.
○ Include implementations of NIST PQC selected algorithms for 

standardization, Round 4 KEMs, FrodoKEM, NTRUPrime, NTRU, 
SABER, Picnic, XMSS, Leighton-Micali.

○ Monash University contributed to the initial implementations of NTRU, 
Falcon, Kyber, NTRUPrime, Dilithium.
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TLS 1.3 handshake

43
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Supporting KEM in TLS 1.3

● Transformation of the Key Exchange scheme 
into Key Encapsulation Mechanisms (KEM) 
scheme

● Adopted the proposition of CRYSTALS-Kyber 
[17]

17.   Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module 
lattice-based KEM. In: EuroS&P. pp. 353–367. IEEE (2018)

44
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Supporting KEM in TLS 1.3

Diffie-Hellman Key Exchange scheme -> KEM scheme
● Public Key 2 -> pk
● Public Key 1 -> ct 45
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Hybrid key exchange in TLS 1.3

● IETF draft by Stebila et al. 
https://datatracker.ietf.org/doc/draft-ie
tf-tls-hybrid-design/

● Composite hybrid using simple 
concatenation approach:
○ Concatenation of public values 

in key exchange
○ Concatenation of shared secrets

■ Drop-in replacement of the 
(EC)DHE shared secret in 
key schedule
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Performance of PQ TLS 1.3 (real network)
● Paquin et al. (2020) measured 

the performance of PQ TLS 1.3 
with liboqs.

○ Hybrid key exchange
○ PQC signatures

● In real network environment:
○ Hybrid key exchange with 

Kyber/FrodoKEM only adds 
very small overhead

○ PQC signatures may add 
bigger overhead

● In unreliable network environment 
(high packet loss rate), 
performance degradation is more 
significant with PQC due to larger 
sizes (see next slides).
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Performance of PQ TLS 1.3 (simulated unreliable network)
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Performance of PQ TLS 1.3 (simulated unreliable network)
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Internet Key Exchange (IKE) v2

● UDP-based protocol.
○ TCP mode isn’t widely deployed.

● Set up Security Association (SA) in 
IPSec.
○ Key exchanges

■ IKE_SA_INIT for creating 
IKE SA

■ IKE_CREATE_CHILD_SA 
for creating additional child 
SA

○ Authentication (IKE_AUTH)
● We focus on key exchange.
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PQC migration in IKEv2

● PQC migration in StrongSwan 6.0 beta:
○ https://github.com/strongswan/strongswan/tree/six-beta
○ Implement PQC algorithms via oqs plugin in libstrongswan (cryptography module)

■ Depend on liboqs
○ Implement PQC key exchanges in libcharon (protocol module)

■ Pure PQC:
● Direct substitution, using private DH group numbers
● Not using IKE_INTERMEDIATE (next slide)

○ Potential IP fragmentation problems
■ (Non-composite hybrid) Multiple Key Exchanges [RFC9370]

● Example configuration: 
https://github.com/strongswan/strongswan/tree/six-beta/testing/tests/ikev
2/rw-cert-qske
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IKE_INTERMEDIATE [RFC9242]

● IKEv2 is UDP-based:
○ Unlike TCP-based protocol, UDP doesn’t have segmentation mechanism.
○ Cause IP fragmentation (very undesirable) if key exchange messages can’t fit into 

one packet.
■ Problems: performance, firewall, potential DoS attack, …

● IKEv2 has a message fragmentation mechanism [RFC7383]
○ However, IKE_SA_INIT key exchange messages can’t be fragmented.

● IKE_INTERMEDIATE:
○ Do PQC key exchange after initial IKE_SA_INIT (before IKE_AUTH).
○ IKE_INTERMEDIATE messages are fragmented by IKEv2 fragmentation.
○ Example: IKEv2 multiple key exchanges [RFC9370]

■ IKE_SA_INIT for classical key exchange
■ IKE_INTERMEDIATE for PQC key exchange
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Multiple Key Exchanges in IKEv2 [RFC9370]
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Future Research

● Problems with existing PQC migration techniques:
○ Extra complexity: entangled state machine, overheads, …
○ Require ad-hoc solution for every application/protocol:

■ E.g. > 8,000 lines of code changes in StrongSwan 6.0 beta to 
implement IKEv2 multiple key exchanges.

● Question: Could we have better architectural design for PQC migration?
○ Simplicity
○ Modularity
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Future Research

● Understand the scope of PQC migration.
○ Beyond common protocols, there exist custom protocols/applications in 

organizations.
○ White House asked US government departments and agencies to submit 

cryptographic system inventory by May 4, 2023 (then reevaluate 
annually).
■ Submit funding assessments 30 days after submission of 

cryptographic system inventory.
● Question: How to figure out the exact scope of PQC migration for a 

particular organization?
● CSIRO is engaging with industrial partners for both questions!
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Future Research

● 4 types of crypto agility in the context of PQC (Alnahawi et al., 2023):
○ Algorithm and Protocol Agility

■ E.g. Hybrid key exchange
○ API Agility

■ E.g. Common APIs in liboqs, Bouncy Castle
○ Design Agility

■ How to design PQC crypto-agile protocols/applications in the future? 
○ Hardware Agility

■ How to design PQC crypto-agile hardwares (FPGA, crypto coprocessor 
etc.)?

■ Could we reuse existing crypto (e.g. RSA) coprocessors for PQC?
56



Unique challenges of PQC migration on IoT

● Resource constraints:
○ Computational Power
○ Memory (stack, code)
○ Energy (e.g. battery powered)

● Difficult to patch/update:
○ Require hardware agility!

● Hostile physical environment:
○ Side-channel attacks
○ Require side-channel resistant implementation!

● We mainly focus on ARM Cortex-M4 (NIST PQC evaluation platform for 
embedded devices)
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Pqm4 cryptography library

● Collection of PQC implementations targeting ARM Cortex-M4
○ https://github.com/mupq/pqm4
○ Developed by Radboud University, Netherland
○ Currently version includes assembly optimized implementations for 

Kyber, BIKE, Dilithium, and Falcon; and reference implementation for 
HQC, SPHINCS+.
■ Some NIST Round 3 algorithms are available in older version.
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PQC speed comparison (CPU cycles, 128-bit security, 
pqm4 implementation, assembly optimized if available)

Scheme KeyGen Encap/Sign Decap/Verify

Kyber512 (AES 
PRG, speed opt.)

369,011 421,685 420,333

Kyber512 (AES 
PRG, stack opt.)

369,736 424,339 423,234

Dilithium2 1,597,999 4,111,596 1,571,804

Falcon512 179,772,454 17,649,735 480,619

SPHINCS+-sha256-
128f-simple

15,388,375 382,533,954 21,150,671

SPHINCS+-sha256-
128s-simple

985,367,046 7,495,603,716 7,165,875
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PQC stack usage comparison (bytes, 128-bit security, 
pqm4 implementation, assembly optimized if available)

Scheme KeyGen Encap/Sign Decap/Verify

Kyber512 (AES 
PRG, speed opt.)

5,076 6,180 6,188

Kyber512 (AES 
PRG, stack opt.)

3,012 3,100 3,116

Dilithium2 38,408 49,380 36,212

Falcon512 1,408 2,796 412

SPHINCS+-sha256-
128f-simple

2,124 2,188 2,676

SPHINCS+-sha256-
128s-simple

2,340 2,408 1,980
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PQC code size comparison (bytes, 128-bit security, 
pqm4 implementation, assembly optimized if available)

Scheme .text .bss Total

Kyber512 (AES 
PRG, speed opt.)

15,784 0 15,784

Kyber512 (AES 
PRG, stack opt.)

13,052 0 13,052

Dilithium2 18,480 0 18,480

Falcon512 82,821 27,648 110,469

SPHINCS+-sha256-
128f-simple

4,504 0 4,504

SPHINCS+-sha256-
128s-simple

4,776 0 4,776

61.data size is 0 for all schemes in the Table.



Our work

● 12 NIST PQC algorithms from pqm4 library

● Integration in WolfSSL’s impl. of TLS 1.3

● Benchmarked them on a board with Cortex-M4

● Performance evaluation of:

○ execution speed

○ memory requirements

○ communication sizes
● Complete overview of PQ TLS integration in 

resource-constrained embedded systems
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Architectural Changes (1st change)

63

● Change in “ClientHello” and “ServerHello”

● First messages; protocol parameters

● Both have the Extensions field



Architectural Changes (1st change)
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● Inside Extensions field:
○ Extension - Supported Groups
○ Extension - Signature Algorithms

● Codepoints
○ New codepoints for PQ algorithms
○ Both chosen according to Open Quantum Safe project
○ Benefit of interoperability of the projects

Scheme Codepoints
ECDH SECP256R1 0x0017

FFDHE 0x0100
Kyber512 0x2F00
Kyber768 0x2F01
Lightsaber 0x2F03

Saber 0x2F04
… …

RSA 0x0285
ECDSA 0x0206

Dilithium2 0x00D3
Dilithium3 0x00D5

… …



Architectural Changes (2nd change)
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● Transformation of the Key Exchange scheme 
into Key Encapsulation Mechanisms (KEM) 
scheme

● Adopted the proposition of CRYSTALS-Kyber 
[17]

17.   Bos, J.W., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler, G., Stehlé, D.: CRYSTALS - kyber: A cca-secure module 
lattice-based KEM. In: EuroS&P. pp. 353–367. IEEE (2018)

https://eprint.iacr.org/2017/634


Architectural Changes (3rd change)

66

● Introduce Post-quantum Certificates

○ Fork of OpenSSL from the Open 
Quantum Safe project

○ Produce digital certs with PQ 
algorithms

○ Introduce a base “Certificate 
Authority”, self-signed

○ Produce certificates for server and 
client, directly signed by the CA.



Architectural Changes
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Experimental Equipment
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● NUCLEO F439ZI evaluation board 
○ 32-bit ARM Cortex-M4 at 180 MHz
○ 192 KB of usable RAM
○ 2 MB of Flash memory

● PC 
○ Intel i7-1165G7, 8 cores at 2.8 GHz

● Access Point
○ connected with Ethernet with mean RTT 0.493 ms

● Oscilloscope
○ PicoScope 5444B
○ Sampling rate of 5 MS/s for 5 seconds window
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PQ TLS 1.3 Handshake Measurements

Algorithm
Combination

Static Usage
(bytes)

.bss Usage
(bytes)

Communication
Sizes (bytes)

Avg Handshake
Time (client)

Avg Handshake
Time (server)

Dil-Kyb 49648 0 14748 96.318 91.062
Falc-Kyb 3680 39936 6833 288.305 285.951
Sph-Kyb 800 0 33892 66977.000 66776.000

… … … … … …
Dil-Bike 81528 49 16292 690.000 121.756
Dil-Hqc 71672 0 19910 198.603 145.989
Dil-Sike 49648 0 13858 886.359 566.125

… … … … … …
RSA-ECDHE 2368 0 3742 540.220 538.158

ECDSA-ECDHE 2368 0 2353 109.171 106.927
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● Average Handshake Time

● Dil-Kyb performs very good and better than Falc-Kyb
● Sph-Kyb is unusable (fast version is unusable in terms of memory)
● Dil-Bike as a client performs bad, as a server good
● Dil-Hqc performs good (better than Falc-Kyb)
● Dil-Sike performs poorly
● RSA-ECDHE performs poorly but ECDSA-ECDHE very good 

○ Dil-Kyb is faster

PQ TLS 1.3 Handshake Measurements

Algorithm 
Combination

Static Usage
(bytes)

.bss Usage
(bytes)

Communication
Sizes (bytes)

Avg Handshake
Time (client)

Avg Handshake
Time (server)
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Dil-Bike 81528 49 16292 690.000 121.756

Dil-Hqc 71672 0 19910 198.603 145.989

Dil-Sike 49648 0 13858 886.359 566.125

… … … … … …

RSA-ECDHE 2368 0 3742 540.220 538.158

ECDSA-ECDHE 2368 0 2353 109.171 106.927
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● Average Handshake Time

● Notes:
○ Optimized version of PQ algorithms are very fast (sometimes faster than traditional)
○ May be furtherly optimised in the future 

■ Employ better software (Cortex-M4 assembly)
■ Employ hardware

PQ TLS 1.3 Handshake Measurements

Algorithm 
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Static Usage
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.bss Usage
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Communication
Sizes (bytes)
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Time (client)
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ECDSA-ECDHE 2368 0 2353 109.171 106.927
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● Communication Sizes

● Performance regarding bandwidth
● Reminder: Communication Size = Total bytes sent and received by a peer during the TLS handshake
● Dominated by the Authentication sizes (certificates and digital signatures)

○ Even more in our mutual authentication scenario
○ Although some times KEM sizes affect them

PQ TLS 1.3 Handshake Measurements

Algorithm 
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.bss Usage
(bytes)

Communication
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Time (client)
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Time (server)

Dil-Kyb 49648 0 14748 96.318 91.062
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ECDSA-ECDHE 2368 0 2353 109.171 106.927
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● Communication Sizes

● Falc-Kyb uses ∼7 KB of bandwidth
● Dil-Kyb uses ∼2 times the bandwidth than Falc-Kyb
● Sph-Kyb uses ∼5 times the bandwidth than Falc-Kyb
● Dil-Bike and Dil-Hqc use more bandwidth than Falc-Kyb
● Dil-Sike has the smallest communication sizes
● Traditional has an order of magnitude smaller sizes

PQ TLS 1.3 Handshake Measurements

Algorithm 
Combination

Static Usage
(bytes)

.bss Usage
(bytes)

Communication
Sizes (bytes)

Avg Handshake
Time (client)

Avg Handshake
Time (server)

Dil-Kyb 49648 0 14748 96.318 91.062
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ECDSA-ECDHE 2368 0 2353 109.171 106.927
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● Communication Sizes 

● Notes:
○ Post-quantum introduces larger sizes (in the order of 10 KB)
○ Can’t be reduced in the future
○ Can’t employ hardware or optimized software
○ Main disadvantage of post-quantum algorithms

PQ TLS 1.3 Handshake Measurements
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● Memory Requirements

● RAM requirements is decisive in resource-constrained embedded systems
● Total board memory: 192 KB
● Dil-Kyb and Falc-Kyb consumes ∼25% of total memory
● Sph-Kyb uses merely 800 bytes
● Dil-Bike, Dil-Hqc and Dil-Sike uses from 25%-41% of total memory
● Traditional combinations uses very little memory

PQ TLS 1.3 Handshake Measurements

Algorithm
Combination

Static Usage
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.bss Usage
(bytes)

Communication
Sizes (bytes)

Avg Handshake
Time (client)
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Time (server)

Dil-Kyb 49648 0 14748 96.318 91.062
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● Memory Requirements

● Notes:
○ This problem is better shown in higher security levels

■ Dilithium5
○ Some algorithms can’t fit at all

■ Classic McEllice (4th round candidate)
○ Maybe not a problem; memory optimized versions in the future

PQ TLS 1.3 Handshake Measurements

Algorithm
Combination

Static Usage
(bytes)

.bss Usage
(bytes)

Communication
Sizes (bytes)

Avg Handshake
Time (client)

Avg Handshake
Time (server)

Dil-Kyb 49648 0 14748 96.318 91.062

Falc-Kyb 3680 39936 6833 288.305 285.951

Sph-Kyb 800 0 33892 66977.000 66776.000
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Dil-Bike 81528 49 16292 690.000 121.756
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Dil-Sike 49648 0 13858 886.359 566.125

… … … … … …

RSA-ECDHE 2368 0 3742 540.220 538.158

ECDSA-ECDHE 2368 0 2353 109.171 106.927



Extending our previous work

● PQC algorithms from pqm4:

○ All NIST PQC algorithms selected for 
standardisation

○ 2 out of 3 from NIST PQC Round 4

○ 1 out of 2 of the BSI recommendations

● Integration in WolfSSL’s impl. of TLS 1.3

● Benchmarked them on a board with Cortex-M4

● Energy and power measurements 

● Interesting results…
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The source code is publicly available as two repositories at:
https://gitlab.com/g_tasop/pq-wolfssl-for-embedded
https://gitlab.com/g_tasop/pq-wolfssl-for-pc

https://gitlab.com/g_tasop/pq-wolfssl-for-embedded
https://gitlab.com/g_tasop/pq-wolfssl-for-pc


Experimental Calculations
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● Nucleo board IDD jumper for connecting an Ammeter in series

● We add a small “shunt” resistor (1.5 Ohm) in the jumper

● Oscilloscope - differential Voltage across the “shunt” resistor

● Knowing the Voltage we calculate the Power consumption:
○ P = V * I = V * (V / R) = V2 / R

● Knowing the avg Time of a handshake we calculate the average 
Energy Consumption:
○ Eavg = P * tavg



Experimental Scenarios
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Two most typical IoT scenarios:

Mutual authentication scenario:
● An end-node is connected to another device (an 

end-node or a powerful device)
● Both are authenticated (e.g MQTT)
● Evaluated TLS client and TLS server

Unilateral authentication scenario:
● An end-node is connected to a more powerful device 

(server)
● Only the server is authenticated (sensor-cloud 

communication)
● Evaluated only TLS client



Experimental Setup
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Our experimental setup:
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Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277

Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373

Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …

Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554

Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533
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● Power consumption is not the same between PQ combinations - not linear with time
● Depends on the operations of each PQ algorithm
● Specific on Cortex-M4 MCUs - not on higher x86 CPUs [2] 

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533

● Algorithm 
Combinations

[2] Mobile Energy Requirements of the Upcoming NIST Post-Quantum Cryptography Standards. Markku-Juhani O. Saarinen. 
2020. In 2020 8th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud). 23–30. 
https://doi.org/10.1109/MobileCloud48802.2020.00012
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● Comparison for 
1st Scenario

● Client and Server in the mutual authentication scenario perform similarly
● Except BIKE

○ Highly asymmetric KEM operations
● Also HQC - smaller difference

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533
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● Comparison for 
1st Scenario

● Dil+Kyb performs the best
● Falc+Kyb consumes more energy - still good performance
● Sph+Kyb needs more than 11 Joule - extremely high energy consumption
● Dil+Bike on server has a competitive energy consumption
● Dil+Hqc also has a very good performance - better than Falc+Kyb
● FrodoKEM combination cannot fit in the board in a mutual authentication scenario

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533
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● Comparison for 
1st Scenario

● All of PQC combinations perform better than RSA+ECDHE, except Sph+Kyb and Dil+Bike as a 
client

● Dil+Kyb performs better than very efficient ECDSA+ECDHE

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533
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● Only TLS client evaluation on this scenario - TLS server would be the same as Server (mut)
● Dil+Kyb performs well
● Falc+Kyb performs better!
● Sph+Kyb is now usable

○ Higher energy consumption but its a conservative choice

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533

● Comparison for 
2nd Scenario
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● Dil+Bike is costly - Bike’s TLS client operations are costly
● Dil+Hqc performs well
● It is now viable to measure FrodoKEM

○ Good performance for a conservative choice
■ AES variant is more efficient
■ Can be pushed further with AES co-processors

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533

● Comparison for 
2nd Scenario
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● Comparison with Traditional algorithm combinations
● Falc+Kyb is more efficient than RSA+ECDHE and ECDSA+ECDHE

○ Almost twice as efficient
● Dil+Kyb is also marginally more efficient than RSA+ECDHE and ECDSA+ECDHE
● Dil+Hqc performs good - but needs x2 times more energy
● The rest of the algorithms require a lot more energy

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

… … … … … … …
Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533

● Comparison for 
2nd Scenario
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● Falc+Kyb (uni) requires LESS energy in high security levels than RSA+ECDHE

Power and Energy consumption of Traditional and PQ TLS 1.3 Handshake

Power (mW) Energy (mJ)

Algorithm
Combination Client (mut) Server (mut) Client (uni) Client (mut) Server (mut) Client (uni)

Dil+Kyb 155.800 161.300 176.300 15.006 14.688 12.277
Falc+Kyb 139.500 136.800 165.500 40.219 39.118 7.373
Sph+Kyb 175.700 175.500 163.400 11767.859 11719.188 148.857

Dil3+Kyb3 161.600 164.200 178.400 25.392 25.203 17.569

Falc5+Kyb3 137.100 133.900 168.900 81.505 78.875 11.190

Dil3+Kyb5 161.200 162.900 180.100 26.693 24.848 19.066
Falc5+Kyb5 138.00 133.700 172.500 83.052 79.191 12.759

Dil+Bike 154.200 160.900 175.200 135.514 23.054 134.554
Dil+Hqc 156.000 158.800 174.800 30.982 23.183 32.097

Dil+FrodoAES – – 180.400 – – 168.907

Dil+FrodoSHAKE – – 199.700 – – 250.074

RSA+ECDHE 144.500 150.400 168.200 78.062 80.939 12.991

ECDSA+ECDHE 167.100 175.500 181.500 18.242 18.766 18.533

● Full Table
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● PQ TLS 1.3 in resource-constrained embedded systems:
○ Can be very fast (even on low resources)
○ But suffer from large communication sizes
○ Also, requires a lot of memory

■ Some security levels can’t fit
■ Some algorithms can’t fit
■ Some may be optimized in the future



Conclusions
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● We can get an energy efficiency upgrade from the 
Post-Quantum transition!

● Dil+Kyb in a mutual authentication scenario

● Falc+Kyb (and marginally Dil+Kyb) in a unilateral 
authentication scenario

● However in more energy expensive communication 
channels (e.g GSM) the overall picture could be different.

● Extra: Security upgrade (traditional AND post-quantum) 
with Falc+Kyb (on unilateral authentication scenario) as 
higher security levels are still more energy efficient than 
traditional TLS 1.3



Future Research

● Hardware Agility
○ Efforts on linear algebra arithmetic of lattice-based crypto:

■ Use RSA coprocessor (Bos et al., 2020)
■ Configurable (i.e. supporting different parameters) hardware 

accelerator on FPGA (Derya et al., 2021)
○ Question: How to design crypto-agile, high-performance, 

side-channel resistant PQC Hardware Security Module (HSM)?
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Future Research

● Efficient side-channel resistant implementation:
○ Existing NIST PQC implementations are constant-time (i.e. 

timing/cache side-channel resistant).
○ However, IoT requires protections of more side-channels:

■ Power, electromagnetic, fault, …
○ Countermeasures are expensive:

■ E.g. Migliore et al. (2019) showed speed overhead of masking 
(countermeasure against power analysis) Dilithium:
● 5.66x/7.8x/13.4x of Order-1/2/3 masking of KeyGen
● 5.68x/11.77x/28.3x of Order-1/2/3 masking of Sign

○ Question: Develop side-channel countermeasures with lower overhead.
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Future Research

● Broader use case scenarios e.g.
○ Vehicle communication (Bindel et al., 2022)
○ Satellite communication
○ 6G communication

● Many has specific protocol/standard with performance requirements 
(bandwidth, latency, etc.)

● Question: How to do PQC migration for these use cases?
● CSIRO is involved in PQC for 6G!
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Thank You!
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